1-Step 2X Multiplex RT-PCR Master Mix-TagMan Probe

Product Name and Catalog Number

1-Step 2X Multiplex RT-PCR Master Mix-TaqMan Probe, Cat. # W146-NR, W146-LR, W146-HR, 2x1mL for 200 reactions x 20µL (No ROX, Low ROX or High ROX)

Intended Use

- The 1-Step 2X Multiplex RT-PCR Master Mix is used for real-time qualitative and quantitative multiplex RT-PCR amplifications with TaqMan probes for up to four templates. For research use only.
- The master mix is a premixed, 2X concentrated solution that has all the components except for genespecific primers, probes, and RNA templates.

Features

- The kit is designed for multiplex RT-PCR with TaqMan probes.
- For the reverse transcription step, this kit uses a highly efficient Thermophilic Reverse Transcriptase (US patent pending), which is a thermophilic type A polymerase, with optimal temperatures of 60-62°C.
- The RTase is easily heat-inactivated at ≥90°C for 1min.
- The RTase efficiently synthesizes complementary DNA strands on RNA templates from gene-specific primers, ≥1 unit per 20µL of reaction.
- The RTase reversely-transcribes single digit copies of target RNA molecules consistently.
- The kit also contains *Taq*-Probe DNA polymerase, specially engineered for TaqMan probes and generating S-shaped curves.
- Up to four pairs of gene-specific primers can be applied in one reaction.
- The concentrations of the primers and probes are variable depending on assay designs and thermocycling protocols (Table 1).
- The preferred PCR product size is ≤150bp.
- The kit has three formulations of ROX, Low ROX or High ROX concentration for your choice.

Kit Contents

2X Master Mix (2x1mL for 200 reactions x 20µL)

Transportation and Storage

The kit can be transported at below 4°C for up to 3 days.

The kit should be kept stable in the dark at -20° C for \leq 24 months with \leq 10 times of freeze-thaw cycles. The kit can be stored at 4° C for a week.

Setup Reaction and Thermocycling

- 1. Thaw 1-Step 2X RT-PCR Master Mix and other reaction components at room temperature, mix each component, centrifuge and then place on ice.
- 2. Determine the total volume for the number of reactions, add 5-10% extra volume, and prepare assay mix of all components except RNA template. Mix the assay mix, centrifuge and then place on ice.
- 3. Aliquot the assay mix into PCR tubes or plate.
- 4. Add RNA template to PCR tubes or plate.
- 5. Seal tubes with flat, optically transparent caps or seal plates with optically transparent film.
- 6. Mix and then briefly centrifuge the tubes or plate.
- 7. Program PCR instrument with indicated thermo-cycling protocol.
- 8. Load PCR tubes or plate and start to run.
- 9. Perform data analysis according to the PCR instrument instructions.

Table 1. Setting up a 20µL or 10µL reaction

	able 1. Setting up a 20µL or 10µL reaction				
Component	Volume per 20µL	Volume per 10µL	Final concentration		
2X Master Mix	10µL	5µL	1X		
Primers ^a	Variable	Variable	Each 150- 900nM		
TaqMan probes ^b	Variable	Variable	Each 150- 250nM		
RNA templates ^c	Variable	Variable	As low as single digit copies of target RNA to ≤1µg total RNA		
H ₂ O	To 20µL	To 10µL			

Footnotes of Table 1

1

^aThe primer's T_m should be designed ≥60°C, preferably between 62°C to 65°C, using primer3 software for high efficiency and specificity.

 b The probe's T_{m} should be 8-10°C higher than the primer's T_{m} preferably between 70-75°C.

°RNA templates should be extracted by a qualified silica-based kit and eluted with low EDTA TE buffer (10mM Tris-HCl, 0.1mM EDTA, pH 8.0-8.3).

Table 2. Compatible instruments

RT-PCR Instrument	ROX required by instrument	Passive dye setup
Bio-Rad® iQ™5, CFX96, CFX384, Opticon Roche Lightcycler® Qiagen Rotor- Gene™ Eppendorf Mastercycler® Cepheid® SmartCycler®	Not recommended	Not necessary
Applied Biosystems® 7500, 7500 Fast, QuantStudio™, ViiA7™, Agilent Mx™	Low ROX (50nM final concentration)	Turn on ROX passive reference dye button
Applied Biosystems® 5700, 7000, 7300, 7700, 7900, 7900HT, 7900HT Fast, StepOne™, StepOnePlus™	High ROX (500nM final concentration)	Turn on ROX passive reference dye button

Table 3. Standard thermocycling protocol

Stage	Temperature	Period	Number of cycles
I	60°C	10min	1
П	95°C	2min	1
	95°C	10sec	
III	60°C, signal acquisition	60sec	35-40

Table 4. Three-Step Thermocycling Protocol

Stage	Temperature	Period	Number of cycles
I	60°C	10min	1
II	95°C	2min	1
III -	95°C	10sec	35-40
	60°C	30sec	35-40

68-72°C, signal acquisition	30sec	
-----------------------------	-------	--

Footnotes of Tables 3 and 4

The three-step thermocycling protocol in Table 4 increases overall DNA polymerase activity by 50%, a more effective protocol than Table 3.

The primer concentration used in Tables 3 and 4 is typically 0.15-0.2uM.

Related Products

- Thermophilic Reverse Transcriptase, Cat. W140
- Taq-Probe Polymerase, Cat. W145
- Taq-Fast Polymerase, Cat. W148
- 1-Step 2X Fast RT-PCR Master Mix-SYBR Green, Cat. 147
- 1-Step 2X RT-PCR Master Mix-TaqMan Probe, Cat. W143
- 1-Step 2X Multiplex RT-PCR Master Mix-TaqMan Probe, Cat. W146
- 1-Step 2X Super Multiplex RT-PCR Master Mix-TaqMan Probe, Cat. W149

Precautions

If you order a "**No ROX**" master mix but have an Applied Biosystems/ThermoFisher instrument, please **turn off ROX passive reference dye button** when setup assays.